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What is Voice Conversion (VC)? 

Voice 
Conversion

The content is preserved. 

Many different aspects can be converted. 

“Hello” “Hello”



What is converted? Speaker 

Detective
Conan

voice-changing 
bow-tie

Agasa
Hiroshi



What is converted? Speaker 

• The same sentence said by different people has different effect.

• Deep Fake: Fool humans / speaker verification system

• Singing voice conversion [Nachmani, et al., INTERSPEECH’19]

https://enk100.github.io/Unsupervised_Singing_Voice_Conversion/

https://tencent-ailab.github.io/pitch-net/

[Deng, et al., ICASSP’20] 

(Back to this issue at 
the end of the talk)

Detective
Conan

Kogoro 
Mouri

(Not today)



What is converted? Speaker 

• Privacy Preserving

• Speech data conveys sensitive speaker attributes. 

• VC as an anonymization method. 

VoicePrivacy Challenge
https://www.voiceprivacychallenge.org/

Spk 1 Spk 2

Spk 3 Spk 4



What is converted? Speaker 

• One simple way to achieve adaptive TTS

Voice 
Conversion

TTSText

We already talk about adaptive TTS approaches in part 1. But these 
approaches need to modify TTS model.

Off-the-shelf

[Polyak, et al., ICASSP’19] 



What is converted? Speaking Style 

• Emotion

• Normal-to-Lombard

• Whisper-to-Normal

• Singers vocal technique conversion

[Seshadri, et al., ICASSP’19]

[Patel, et al., SSW’19]

[Gao, et al., INTERSPEECH’19] 

[Luo, et al., ICASSP‘20] Lombard Effect

https://www.fohlio.com/blog/psychology-restaurant-
interior-design-part-4-restaurant-acoustics



What is converted? Speaking Style 

• Emotion

• Normal-to-Lombard

• Whisper-to-Normal

• Singers vocal technique conversion

[Seshadri, et al., ICASSP’19]

[Patel, et al., SSW’19]

[Gao, et al., INTERSPEECH’19] 

e.g., ‘lip thrill’ or ‘vibrato’

[Luo, et al., ICASSP‘20] 
Bob

Alice

Whisper 

?????
Normal



Improving Intelligibility

• Surgical patients who have had parts of their articulators removed

• Dysarthria: speech sound disorder resulting from neurological 
injury of the motor component of the motor-speech system.

Voice 
Conversion

Dysarthria Clearer

[Biadsy, et al., IS’19]
[Chen et al., IS’19]

[Huang, et al., IS’21]
[Huang, et al., ICASSP’22b]

[Wang, et al., ICASSP’22]



Data Augmentation 

[Mimura, et al., 
ASRU 2017]

[Keskin, et al., ICML workshop’19]

Clean Speech Noisy Speech

VC?

VC?

VC Training 
Data x 2



Airborne to bone-conducted speech

[Pucher, et al., IS’21] 

Conversion



Binaural Speech Synthesis

• crucial for acoustic realism and depth perception

[Huang, et al., IS’22] 

[Richard, et al., ICLR’21] 



Data Available 

Parallel Data

Unparallel Data

How are you? How are you?

天氣真好 How are you?

Lack of training data:
• Model Pre-training
• Synthesized data!  

[Huang, et al., NTERSPEECH’20]

[Biadsy, et al., INTERSPEECH’19] 

Good morning
the focus of 
today's talk



Capabilities 
One-to-one VC

Many-to-many VC

Voice 
Conversion

Goodbye Goodbye

Speaker 
X

Speaker 
Y

Voice 
Conversion

Goodbye Goodbye

Seen 
Speaker

Speaker identity (Seen Speakers)

Seen 
Speaker

Seen Speakers

= in training data One-hot

Source speaker Target speaker



Any-to-many VC

Any-to-any VC

Voice 
Conversion

Goodbye Goodbye

Any 
Speakers

Speaker identity (Seen Speakers)

Seen 
Speakers

Voice 
Conversion

Goodbye Goodbye

Any 
Speakers

Any 
Speakers

Any 
Speakers

Hello

Also known as one-shot VC 
(or zero-shot VC?)

Speaker identity 



Adaptive TTS vs. Any-to-any VC

TTS
ModelAdaptive TTS

VC
Model

Reference audio
(“say it like this”)

Reference audio
(“say it like this”)

Audio to be converted
(provide content)

Any-to-any VC



Introduction of Voice Conversion (VC) 

VC with Unparallel Data

Beyond Speaker Conversion

VC plus Self-supervised Learning

Security Issue 

Outline 
Much of the discussion here is based on speaker conversion.

(the same idea can be applied to other types of conversions)



VC with Unparallel Data

Voice 
Conversion

speech

d

T

speech

d

T

Vocoder

Same length

Seq2seq is not needed

acoustic 
features

acoustic 
features

In most real implementations ……

Directly generating  waveforms 
[Polyak, et al., IS’21] [Nguyen, et al., ICASSP’22] 

Change length [Yeh, et al., SLT’18]

[Polyak, et al., ICASSP’19] 



Introduction of Voice Conversion (VC) 

VC with Unparallel Data

Beyond Speaker Conversion

VC plus Self-supervised Learning

Security Issue 

Outline 

Disentanglement 

Direct Transformation

Example-based



Disentanglement 

How are you?

Content
Encoder

How are you?

Decoder

Speaker
Encoder

How are 
you?

How are you?

frame-wise

utterance-wise



Disentanglement 

Do you want 
to study PhD?

Good bye

Content
Encoder

Do you want 
to study PhD?

Decoder

Speaker
Encoder

Do you 
……

Do you want 
to study PhD?

新垣結衣
(Aragaki Yui)



Content
Encoder

Decoder

Speaker
Encoder

Do you 
……

Autoencoder Framework  

as close as possible

Do you ……

L1 or L2

Perceptual Loss

[Li, et al., IS’20] [Shi, et al., ICASSP’22] [Chen et al., IS’19]

Pre-trained
Network

Pre-trained
Network



Content
Encoder

Decoder

Speaker
Encoder

Do you 
……

Autoencoder Framework  

as close as possible

Do you ……

How can you make one encoder for content and one for speaker?

L1 or L2 Perceptual Loss [Li, et al., IS’20]
[Shi, et al., ICASSP’22] 
[Chen et al., IS’19]



Content
Encoder

Decoder

Speaker
Encoder

Do you 
……

Initializing Encoders Properly 

Do you ……

Speech recognition

[Sun, et al., ICME’16][Liu, et al., INTERSPEECH’18]

phoneme posteriorgram (PPG)

Speaker embedding 
[Qian, et al., ICML’19] [Liu, et al., INTERSPEECH’18][Hsu, et al., APSIPA’16]

i-vector, d-vector, x-vector … 



Content
Encoder

Decoder

Speaker
Encoder

Do you 
……

Initializing Encoders Properly 

Do you ……

Speech recognition

Speaker embedding 

Also known as 
Recognition-synthesis 
framework

Serve the role as an 
adaptive TTS



Content
Encoder

Decoder

Speaker
Encoder

Do you 
……

Initializing Encoders Properly 

Do you ……

Speaker embedding 
[Qian, et al., ICML’19] [Liu, et al., INTERSPEECH’18][Hsu, et al., APSIPA’16]

i-vector, d-vector, x-vector … 

If speech recognizer is not available ……

Speaker information leakage 



Content
Encoder

Decoder

Speaker
Encoder

Do you 
……

Adversarial Training 

Do you ……

Speaker embedding 
[Qian, et al., ICML’19] [Liu, et al., INTERSPEECH’18][Hsu, et al., APSIPA’16]

i-vector, d-vector, x-vector … 

Speaker
Classifier

Discriminator

or

Generator 

Learn to fool the 
speaker classifier

Speaker classifier and encoder are learned iteratively



Content
Encoder

Decoder

Speaker
Encoder

Do you 
……

Information Bottleneck 

Speaker embedding 
[Qian, et al., ICML’19] [Liu, et al., INTERSPEECH’18][Hsu, et al., APSIPA’16]

i-vector, d-vector, x-vector … 

[Qian, et al., ICML’19] 

[Chen, et al., ICASSP’21a] 

Auto VC: control dimension 

Again VC: Activation function

Too wide dimension: content encoder 
also encode speaker information  

Too narrow dimension: Content encoder 
cannot encode all content information 

Decrease dimension: squeeze out speaker 
information  



Content
Encoder

Decoder

Speaker
Encoder

Vector Quantization 

Speaker embedding i-vector, d-vector, x-vector … 

quantized vector 

Like VQVAE
[Liu, et al., IS’19]
[Kobayashi, et al., ICASSP’21]
[Chen, et al., IS’21]

codebookInformation Bottleneck 

continuous 
vector 



-

Content
Encoder

Decoder

quantized vector 

Like VQVAE
[Liu, et al., IS’19]
[Kobayashi, et al., ICASSP’21]
[Chen, et al., IS’21]

Average over whole utterance 

[Wu, et al., ICASSP’20]

[Wu, et al., IS’20] 

VQVC

VQVC+

Vector Quantization 

Information Bottleneck 

continuous 
vector 

contentContent + 
speaker

speaker



Information Perturbation

Content
Encoder

Decoder

Speaker
Encoder

Do you 
……

as close as possible

Do you ……

perturb speaker
keep content

perturbed speaker 
information

Learn not to extract 
speaker information

How to perturb?

via signal processing

[Choi, et al., NeurIPS’21] 

[Qian, et al., ICML’22] 

[Xie, et al., arXiv’22] 



Designing network architecture 

How are you?

Content
Encoder

= instance normalizationIN

Speaker
Encoder

How are 
you?

Decoder

IN

How are you?

(remove speaker information)



Designing network architecture 

= instance normalizationIN (remove speaker information)

Content Encoder



Designing network architecture 

…
…

…
…

…
…

…
…

IN
…

…

…
…

…
…

…
…

Normalize for each channel

Each channel has zero 
mean and unit variance

Content Encoder



Designing network architecture 

How are you?

Content
Encoder

= instance normalizationIN

Speaker
Encoder 

How are 
you?

Decoder

IN

How are you?

(remove speaker information)



Designing network architecture 

How are you?

Content
Encoder

Speaker
Encoder 

How are 
you?

Decoder

IN

A
d

aIN
How are you?

= instance normalizationIN

AdaIN = adaptive instance normalization

(remove speaker information)

(only influence speaker information)



Output of 
Speaker Encoder

…
…

…
…

…
…

…
…

IN

…
…

…
…

…
…

…
…

𝒛1 𝒛2 𝒛3 𝒛4

Decoder

𝒛1
′ 𝒛2

′ 𝒛3
′ 𝒛4

′

Add Global

𝒛𝑖
′ = 𝜸⨀𝒛𝑖 + 𝜷

A
d

aIN
𝜸

𝜷

AdaIN = adaptive instance normalization

(only influence speaker information)



Designing network architecture 

Content
Encoder

Speaker
Encoder 

Decoder

IN

A
d

aIN

Content 
Information

Speaker 
Information

The speakers are unseen during training (one-shot VC).

新垣結衣
(Aragaki Yui)

Training from VCTK

For more results 
[Chou, et al., INTERSPEECH 2019] 



Designing network architecture 

Content
Encoder

Speaker
Encoder 

Decoder

IN

A
d

aIN

Content 
Information

Speaker 
Information

新垣結衣
(Aragaki Yui)

The speakers are unseen during training (one-shot VC).
Training from VCTK

For more results 
[Chou, et al., INTERSPEECH 2019] 



Designing network architecture 

How are you?

Content
Encoder

Speaker
Encoder 

IN which
speaker?

Speaker 
Classifier

With IN Without IN

Acc. 37.5% 65.8%

Use a speaker classifier to probe 
the content embedding 

Speaker information removed?

Training from VCTK

For more results 
[Chou, et al., INTERSPEECH 2019] 



Designing network architecture 

How are you?

Content
Encoder

Speaker
Encoder 

IN Unseen Speaker Utterances

female

male



Comparison of VC approaches 

source utterance

target utterance

Content
Encoder

Decoder

Speaker
Encoder How good it is?

• Two aspects: content preserving and target speaker similarity
• Human evaluation is the best choice (Mean opinion score, MOS). 
• But there are some acceptable automatic evaluation methods.  

[Huang, et al., SLT’21b]



ASR Transcript

Manual transcription of source utterance 

Converted
Speech

Character error rate 
(CER)

How to automatically evaluate content preserving? 

How to automatically evaluate target speaker similarity? 

Speaker 
Verification

Converted
Speech

Target
Utterance

Accept 
(same speaker)?



Comparison of VC approaches [Huang, et al., SLT’21b]

Dataset Abbr.

VCTK S

LibriTTS LT

LibriSpeech LS

CMU C

THCHS-30 T

Training on VCTK

In domain 

out of domain 

different language

Testing on: 



Dataset Abbr.

VCTK S

LibriTTS LT

LibriSpeech LS

CMU C

THCHS-30 T

Training on VCTK

Testing on: 

Higher target 
speaker similarity

better content preserving 

Source utterance 

target utterance 



Minimize the correlation between different 
speech representations [Wang, et al., IS’21a] 

Content
Encoder

Speaker
Encoder

Do you ……

Estimate 
Mutual 

Information 

Mutual 
Information 

Learn to minimize 
Mutual Information 

e.g., Contrastive Log-ratio 
Upper Bound (CLUB)

[Cheng, et al., ICML’20] 



Training and Inference Mismatch? 

Decoder

Content
Encoder

Speaker
Encoder

Decoder

Content
Encoder

Speaker
Encoder

Training 

Inference 



Training and Inference Mismatch? 

Decoder

Content
Encoder

Speaker
Encoder

Training 

Discriminatorreal or generated?

which speaker? Speaker 

Classifier
[Chou, et al., INTERSPEECH’18]

[Liu, et al., INTERSPEECH’19]

Cheat discriminator

Help speaker classifier



Training and Inference Mismatch? 

Decoder

Content
Encoder

Speaker
Encoder

Training 

Content
Encoder

Speaker
Encoder

as close as possible

as close as possible

[Zhou, et al., IS’21] 

[Dang, et al., ICASSP‘22] 

[Du, et al., SLT’21] 



Introduction of Voice Conversion (VC) 

VC with Unparallel Data

Beyond Speaker Conversion

VC plus Self-supervised Learning

Security Issue 

Outline 

Disentanglement 

Direct Transformation

Example-based



CycleGAN-VC 

𝐺𝑋→𝑌

𝐷𝑌

Speaker X

scalar

Input audio belongs 
to speaker Y?

Become similar 
to speaker Y

Speaker X

Speaker Y

Speaker Y

(One-to-one VC)



CycleGAN-VC 

𝐺𝑋→𝑌

𝐷𝑌

Speaker Y

Speaker X

scalar

Become similar 
to speaker Y

Speaker X

Speaker Y

Not what we want!
ignore 
input

Input audio belongs 
to speaker Y?

(One-to-one VC)

Hello &$%@*%@



CycleGAN-VC 

𝐺𝑋→𝑌

𝐷𝑌 scalar

𝐺Y→X

Cycle consistency

Speaker Y

Hello

Input audio belongs 
to speaker Y?

as close as possible

&$%@*%@ Hello
Hello



CycleGAN-VC 

𝐺𝑋→𝑌 𝐺Y→X

as close as possible

𝐺Y→X 𝐺𝑋→𝑌

as close as possible

𝐷𝑌𝐷𝑋
scalar: belongs to 
speaker Y or not

scalar: belongs to 
speaker X or not

[Kaneko, et al., ICASSP’19]

[Kaneko, et al., arXiv’17] [Kaneko, et al., IS’20] 

CycleGAN-VC, CycleGAN-VC2, CycleGAN-VC3



MaskCycleGAN-VC

𝐺𝑋→𝑌

𝐷𝑌 scalar

𝐺Y→X

Cycle consistency

Speaker Y

Input audio belongs 
to speaker Y?

as close as possible

Masking some frames

(as in self-supervised 
learning)

[Kaneko, et al., ICASSP’21] 



CycleGAN-VC 

• Cycle consistency is not the only way to maintain the content 

[Li, et al., IS’21] 



scalar: belongs to 
speaker 𝑠𝑖 or not

audio of 
speaker 𝑠𝑖

audio of 
speaker 𝑠𝑗

speaker 𝑠𝑖

speaker 𝑠𝑗

G

D

StarGAN-VC



𝐺𝑋→𝑌 𝐺Y→X

as close as possible

𝐷𝑌
scalar: belongs to 
speaker Y or not

𝐺

as close as possible

𝐷
scalar: belongs to 
input speaker or not

speaker 𝑠𝑖

audio of 
speaker 𝑠𝑘

𝐺

speaker 𝑠𝑘

CycleGAN-VC

StarGAN-VC

(The domain classifier is ignored here.)



scalar: belongs to 
speaker 𝑠𝑖 or not

audio of 
speaker 𝑠𝑖

audio of 
speaker 𝑠𝑗

speaker 𝑠𝑖

speaker 𝑠𝑗

G

D

Each speaker is represented as a one-hot vector.

[Kameoka, et al., SLT’18] [Kaneko, et al., INTERSPEECH’19]
Many-to-many VC

StarGAN-VC



scalar: belongs to 
speaker 𝑠𝑖 or not

audio of 
speaker 𝑠𝑖

audio of 
speaker 𝑠𝑗

speaker 𝑠𝑖

speaker 𝑠𝑗

Speaker Encoder

G

D

Speaker Encoder

Pre-trained Speaker Encoder Any-to-any VC[Wnag, et al., ICASSP’20] 

[Chen, et al., ICASSP’21b] 

StarGAN-VC



Direct Transformation vs. Disentanglement 

Decoder

Content
Encoder

audio of 
speaker 𝑠𝑖

audio of 
speaker 𝑠𝑗

speaker 𝑠𝑗

Speaker Encoder

G

Speaker
Encoder

G

[Eskimez, et al., IS’21] 

GAN-based disentanglement 

Adaptive instance 
normalization

[Kaneko, et al., INTERSPEECH’19] 



Decoder

Content
Encoder

Speaker
Encoder

Decoder

Content
Encoder

Speaker
Encoder

Decoder

Content
Encoder

Speaker
Encoder

as close as possible

𝐷
speaker 𝑠𝑖

scalar

Adding cycle consistency 
on disentanglement

This is StarGAN-VC!

X

Y

X

Y



Introduction of Voice Conversion (VC) 

VC with Unparallel Data

Beyond Speaker Conversion

VC plus Self-supervised Learning

Security Issue 

Outline 

Disentanglement 

Direct Transformation

Example-based



Example-based Approach 
[Sundermann, et al., ICASSP’06]
[Takashima, et al., SLT’12]
[Jin, et al., ICASSP’16] 

Source 
Speaker

Target 
Speaker

Search
Extract 

Post-process

1 2 3

1

2 3

1 2 3

Using an end-to-end network to realize this process



[Lin, et al., ICASSP’21] [Lin, et al., IS’21] 

So
u

rce 
En

co
d

er

D
eco

d
er

Target Encoder

Inference 

Fragment VC

Source 
Speaker

Target 
Speaker

Attention weights

query 
vectors

key 
vectors

value 
vectors

Search Extract Post-process



[Lin, et al., ICASSP’21] [Lin, et al., IS’21] 

So
u

rce 
En

co
d

er

D
eco

d
er

Target Encoder

Training 

Fragment VC

as close as possible

Autoencoder style as 
disentanglement approach 



[Lin, et al., ICASSP’21] [Lin, et al., IS’21] 

So
u

rce 
En

co
d

er

D
eco

d
er

Target Encoder

Fragment VC

as close as possible

Same speaker 
different utterances 

Outperform disenchantment approaches 
using instance normalization

2nd-stage Training 



Introduction of Voice Conversion (VC) 

VC with Unparallel Data

Beyond Speaker Conversion

VC plus Self-supervised Learning

Security Issue 

Outline 



Speech conveys rich information

Content

Speaker

(timbre)

Pitch

Rhythm

Environment 

(e.g., background noise)



Prosody 
Content
Encoder

Decoder

Speaker
Encoder

Do you 
……

Do you ……

Prosody
Encoder

prosodic features: Use toolkit to extract 
per-frame F0 contour, energy, etc. 

[Qian, et al., ICASSP’20] 



Prosody 
Content
Encoder

Decoder

Speaker
Encoder

Do you 
……

Do you ……

Prosody
Encoder

Predictor

Predictor

Predictor

pitch

energy

[Zhao, et al., ICASSP’22] 

Learning prosody 
extractor 

prosodic features plus learning 
prosody extractor

[Wang, et al., IS’21b] 



Speech Split
[Qian, et al., ICML’20] 

Content
Encoder

Speaker
Encoder

Pitch
Encoder

Rhythm
Encoder

• Decoder takes 
speaker ID as input

• Pitch encoder: Pitch 
contour as input 

Information perturbation: 

RR (random resampling) removes 
rhythm 

• Content encoder: 

no need to encoder 
speaker, pitch  

Cannot encode 
rhythm due to RR

• Rhythm encoder 

Only encode pitch 



Speech Split

[Qian, et al., ICML’20] [Chan, et al., ICASSP’22] 

= pitch smootherPS

VTLP = Vocal Tract Length Perturbation

= spectral envelope SE



Speech Split

• Demo: https://auspicious3000.github.io/SpeechSplit-Demo/



Adversarial Mask-And-Predict

[Wang, et al., IS’22] 
Content
Encoder

Speaker
Encoder

Pitch
Encoder

Rhythm
Encoder

Predictor

mask
Predict embedding of 
the masked attributeThe encoders learn to 

fool the predictor. 



Background Sounds

• Background noise can harm the VC models' performance. Removal of background 
noise by speech enhancement before VC.

• VC in movie/video: convert the speaker’s identity while preserving the 
background sounds. [Xie, et al., ICASSP’22] 

[Huang, et al., ICASSP’22a] 



Introduction of Voice Conversion (VC) 

VC with Unparallel Data

Beyond Speaker Conversion

VC plus Self-supervised Learning

Security Issue 

Outline 



Self-supervised Learning Framework 

Pre-trained Model

Unlabeled Data

Phase 1: Pre-train

representations 

Task-agnostic

• Mask the input signals and then 
reconstruct them.

• Predict the targets obtained 
without human efforts. 

• Contrastive learning 

(not complete survey)



Self-supervised Learning Framework 

Pre-trained Model

Phase 2: Downstream 

A downstream task to 
be solved (e.g., ASR)

Downstream Model

“How are you?”

Labelled data



https://arxiv.org/abs/2205.10643



Content
Encoder

Decoder

Speaker
Encoder

Do you 
……

Self-supervised model as Content Encoder

Do you ……

Speaker embedding 
i-vector, d-vector, x-vector … 

PASE+ APC NPC

Tera DeCoAR wav2vec

HuBERT vq-wav2vec ……

• Self-supervised models are helpful.
• vq-wav2vec is the best
• Vector quantization (VQ) is critical for 

content encoder. 

[Huang, et al., ICASSP’22c] S3PRL-VC



[Polyak, et al., IS’21] 

Self-supervised model as Content Encoder
Speech Resynthesis from Discrete Disentangled Self-Supervised Representations



Self-supervised Model as Content Encoder 

• The discrete representation effectively removes speaker information.

• But some language content is discarded resulting in mispronunciation.

[Niekerk , et al., ICASSP’22] 



Disentanglement from Self-supervised Model

Neural analysis and synthesis 
(NANSY)

[Choi, et al., NeurIPS’21] 

Layer 1

Layer 2

Layer 12

...
Wav2vec 2.0

Speaker Embedding 

Content Embedding  
Different layers encode 
different information. 

• Lower layer

• Higher layer

Speaker 

Content 



[Lin, et al., IS’21] 

So
u

rce 
En

co
d

er

D
eco

d
er

Target Encoder

Fragment VC

+ Self-supervised models 

CPC, APC, wav2vec 2.0

CPC, APC, wav2vec 2.0

CPC for both source encoder and target encoder 
achieves the best performance.



Pre-trained Model

“How are you?”

ASR

Speaker 42

Speaker
Identification

Apply pre-trained models to a wide 
range of speech processing tasks 

VC improves Self-supervised Learning 

Pre-trained Model

“How are you?”

ASR

Speaker 42

Speaker
Identification

Disentanglement 

[Qian, et al., ICML’22] 

[Chan, et al., IS’22] 



Introduction of Voice Conversion (VC) 

VC with Unparallel Data

Beyond Speaker Conversion

VC plus Self-supervised Learning

Security Issue 

Outline 



Spoofing Detection

Anti-
Spoofing 

Model

Non-Spoofing

Spoofing

VC

Other Processing 

Speech generated by voice conversion can fool 
both humans and speaker verification system. 

ASV spoofing challenge 
https://www.asvspoof.org/



Adversarial Attack 

Anti-
Spoofing 

Model

Non-Spoofing

Spoofing

VC
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[Ding, et al., IS’21] 
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Other Processing 



Set a thief to catch a thief

• Adversarial Attack

• Adversarial Attack to VC model! 

Target speakers unperceived noise

+ Make VC model 
fail to convert



Adversarial Attack to VC model

Source

Voice 
Conversion

Voice 
Conversion

+

fail to convert

Target

Source

Target

unperceived signal

As different 
as possible

[Huang, et al., SLT’21b]
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