

Neural Speech Synthesis

Xu Tan Microsoft Research Asia

Hung-yi Lee National Taiwan University

INTERSPEECH 2022 2022-09-18

Speaker information

- Xu Tan (谭旭)
- Principal Researcher and Research Manager @ Microsoft Research Asia
- Research interests
 - Speech/Sound: TTS, AI music
 - NLP: machine translation, text generation, language pre-training
 - Digital human generation
- Some links
 - Homepage: https://www.microsoft.com/en-us/research/people/xuta/
 - Google Scholar: https://scholar.google.com/citations?user=tob-U1oAAAAJ

Speaker information

- Hung-yi Lee (李宏毅)
- Associate Professor @ National Taiwan University
- Research interests
 - Speech processing: voice conversion, speech recognition, etc.
 - Natural language processing: abstractive summarization, question answering, etc.
- Some links
 - Homepage: https://speech.ee.ntu.edu.tw/~hylee/index.php
 - Google Scholar: https://scholar.google.com/citations?user=DxLO11IAAAAJ

Part 1: Text-to-Speech Synthesis

- Background
- Key Components of TTS
- Advanced Topics in TTS
- Summary and Future Directions

Previous TTS tutorials: ISCSLP 2021, IJCAI 2021, ICASSP 2022 https://github.com/tts-tutorial

TTS survey paper: A Survey on Neural Speech Synthesis https://arxiv.org/pdf/2106.15561.pdf

Part 1: Text-to-Speech Synthesis

Part 1.1: Background

Text-to-Speech Synthesis

• Text-to-speech (TTS): generate intelligible and natural speech from text

- Enabling machine to speak is an important part of AI
 - TTS (speaking) is as important as ASR (listening), NLU (reading), NLG (writing)
 - Human beings tried to build TTS systems dating back to the **12th century**

					Neural TTS
					WaveNet (DeepMind)
1950s	1970s	199	90s	2010s	2016
Articulatory Synthesis	Formant Synthesis	Concatenative Synthesis	Statistical Parametric Synthesis	Neural Speech Synthesis	(Deep) Neural Speech Synthesis
9/18/2022		Spee	ech Synthesis Tutorial @ INTERSPEE	CH 2022	7

Part 1: Text-to-Speech Synthesis

Part 1.2: Key Components of TTS

Key components of neural TTS systems

• Text analysis, acoustic model, and vocoder

- Text analysis: text \rightarrow linguistic features
- Acoustic model: linguistic features \rightarrow acoustic features
- Vocoder: acoustic features \rightarrow speech

Key components in TTS

Text analysis

• Transform input text into linguistic features that contain rich information about pronunciation and prosody to ease the speech synthesis.

Text analysis——Text processing

- Document Structure Detection
 - Sentence breaking: a knowledge of the sentence unit is important for correct pronunciation and prosodic breaking
- Text Normalization
 - Convert text from nonorthographic form (written form) into orthographic form (speakable form)
 - 2:18 pm, 05/23/2022, \$32
- Linguistic Analysis
 - Sentence Type Detection: . ! ?
 - Word/Phrase Segmentation: Chinese word segmentation
 - Part-of-Speech Tagging: noun, verb, preposition

Text analysis——Phonetic analysis

- Polyphone Disambiguation
 - Polyphone refers to word that can be pronounced in two or more different ways, where each way represents a different word sense
 - Polyphone disambiguation is to decide the appropriate pronunciation based on the context of this word/character
 - E.g., resume: /ri' zju:m' / or /' rezjumei/, "奇" in /ji-/ or /qi'/
- Grapheme-to-Phoneme Conversion
 - Transform character (grapheme) into pronunciation (phoneme)
 - Alphabetic languages (e.g., Spanish): handcrafted rules
 - Alphabetic languages (e.g., English): use G2P model and lexicon
 - Non-alphabetic languages (e.g., Chinese): use lexicon

Text analysis——Prosody analysis

- Prosody explicitly perceived by human
 - Intonation, stress pattern, loudness variations, pausing, and rhythm
- Latent factors: Pitch, Duration, and Energy

Acoustic model

- Acoustic model in SPSS
- Acoustic models in end-to-end TTS
 - RNN-based (e.g., Tacotron series)
 - CNN-based (e.g., DeepVoice series)
 - Transformer-based (e.g., FastSpeech series)
 - Other (e.g., Flow, GAN, VAE, Diffusion)

	Acoustic Model	Input→Output	AR/NAR	Modeling	Structure
SPSS	HMM-based [416, 356] DNN-based [426] LSTM-based [78] EMPHASIS [191] ARST [375] VoiceLoop [333]	$\begin{array}{l} Ling \rightarrow MCC+F0\\ Ling \rightarrow MCC+BAP+F0\\ Ling \rightarrow LSP+F0\\ Ling \rightarrow LinS+CAP+F0\\ Ph \rightarrow LSP+BAP+F0\\ Ph \rightarrow MGC+BAP+F0 \end{array}$	/ NAR AR AR AR AR	/ / / Seq2Seq /	HMM DNN RNN Hybrid RNN hybrid
RNN	Tacotron [382]	$Ch \rightarrow LinS$	AR	Seq2Seq	Hybrid/RNN
	Tacotron 2 [303]	$Ch \rightarrow MelS$	AR	Seq2Seq	RNN
	DurIAN [418]	$Ph \rightarrow MelS$	AR	Seq2Seq	RNN
	Non-Att Tacotron [304]	$Ph \rightarrow MelS$	AR	/	Hybrid/CNN/RNN
	MelNet [367]	$Ch \rightarrow MelS$	AR	/	RNN
слл end TTS	DeepVoice [8] DeepVoice 2 [87] DeepVoice 3 [270] ParaNet [268] DCTTS [332] SpeedySpeech [361] TalkNet 1/2 [19, 18]	$\begin{array}{c} Ch/Ph {\rightarrow} MelS\\ Ch/Ph {\rightarrow} MelS\\ Ch/Ph {\rightarrow} MelS\\ Ph {\rightarrow} MelS\\ Ch {\rightarrow} MelS\\ Ph {\rightarrow} MelS\\ Ch {\rightarrow} MelS\\ Ch {\rightarrow} MelS\\ \end{array}$	AR AR AR NAR AR NAR NAR	/ / Seq2Seq Seq2Seq Seq2Seq / /	CNN CNN CNN CNN CNN CNN CNN
5) Transformer ch series) sion)	TransformerTTS [192] MultiSpeech [39] FastSpeech 1/2 [290, 292] AlignTTS [429] JDI-T [197] FastPitch [181] AdaSpeech 1/2/3 [40, 403, 404] DenoiSpeech [434] DeviceTTS [126] LightSpeech [220]	$\begin{array}{l} Ph \rightarrow MelS \\ Ph \rightarrow MelS \\ Ph \rightarrow MelS \\ Ch/Ph \rightarrow MelS \\ Ph \rightarrow MelS \end{array}$	AR AR NAR NAR NAR NAR NAR NAR NAR NAR	Seq2Seq Seq2Seq Seq2Seq Seq2Seq Seq2Seq Seq2Seq Seq2Seq Seq2Seq /	Self-Att Self-Att Self-Att Self-Att Self-Att Self-Att Self-Att Self-Att Hybrid/DNN/RNN Hybrid/Self-Att/CNN
Flow	Flow-TTS [234]	$Ch/Ph \rightarrow MelS$	NAR*	Flow	Hybrid/CNN/RNN
	Glow-TTS [159]	$Ph \rightarrow MelS$	NAR	Flow	Hybrid/Self-Att/CNN
	Flowtron [366]	$Ph \rightarrow MelS$	AR	Flow	Hybrid/RNN
	EfficientTTS [235]	$Ch \rightarrow MelS$	NAR	Flow	Hybrid/CNN
VAE	GMVAE-Tacotron [119]	$Ph \rightarrow MelS$	AR	VAE	Hybrid/RNN
	VAE-TTS [443]	$Ph \rightarrow MelS$	AR	VAE	Hybrid/RNN
	BVAE-TTS [187]	$Ph \rightarrow MelS$	NAR	VAE	CNN
	Para. Tacotron 1/2 [74, 75]	$Ph \rightarrow MelS$	NAR	VAE	Hybrid/Self-Att/CNN
GAN	GAN exposure [99]	$Ph \rightarrow MelS$	AR	GAN	Hybrid/RNN
	TTS-Stylization [224]	$Ch \rightarrow MelS$	AR	GAN	Hybrid/RNN
	Multi-SpectroGAN [186]	$Ph \rightarrow MelS$	NAR	GAN	Hybrid/Self-Att/CNN
Speech Synthe Diffusion	Diff-TTS [141]	$Ph \rightarrow MelS$	NAR*	Diffusion	Hybrid/CNN
	Grad-TTS [276]	$Ph \rightarrow MelS$	NAR	Diffusion	Hybrid/Self-Att/CNN
	PriorGrad [185]	$Ph \rightarrow MelS$	NAR	Diffusion	Hybrid/Self-Att/CNN

Acoustic model——RNN based

- Tacotron 2 [303]
 - Evolved from Tacotron [382]
 - Text to mel-spectrogram generation
 - LSTM based encoder and decoder
 - Location sensitive attention
 - WaveNet as the vocoder
 - Other works
 - GST-Tacotron [383], Ref-Tacotron [309]
 - DurlAN [418]
 - Non-Attentative Tacotron [304]
 - WaveTacotron [385]

Acoustic model——CNN based

• DeepVoice 3 [270]

- Evolved from DeepVoice 1/2 [8, 87]
- Enhanced with purely CNN based structure
- Support different acoustic features as output
- Support multi-speakers

- Other works
 - DCTTS [332] (Contemporary)
 - ClariNet [269]
 - ParaNet [268]

Acoustic model——Transformer based

- TransformerTTS [192]
 - Framework is like Tacotron 2
 - Replace LSTM with Transformer in encoder and decoder
 - Parallel training, quality on par with Tacotron 2
 - Attention with more challenges than Tacotron 2, due to parallel computing

- Other works
 - MultiSpeech [39]
 - Robutrans [194]

Text

Acoustic model——Transformer based

- FastSpeech [290]
 - Generate mel-spectrogram in parallel (for speedup)
 - Remove the text-speech attention mechanism (for robustness)
 - Feed-forward transformer with length regulator (for controllability)

Acoustic model——Transformer based

- FastSpeech 2 [292]
 - Improve FastSpeech
 - Use variance adaptor to predict duration, pitch, energy, etc
 - Simplify training pipeline of FastSpeech (KD)
 - FastSpeech 2s: a fully end-to-end parallel text to wave model
 - Other works
 - FastPitch [181]
 - JDI-T [197], AlignTTS [429]

Vocoder

- Autoregressive vocoder
- Flow-based vocoder
- GAN-based vocoder
- VAE-based vocoder
- Diffusion-based vocoder

	Vocoder	Input	AR/NAR	Modeling	Architecture
	WaveNet [260]	Linguistic Feature	AR	1	CNN
	SampleRNN [239]	/	AR	1	RNN
	WaveRNN [151]	Linguistic Feature	AR	1	RNN
	LPCNet [370]	BFCC	AR	1	RNN
AR	Univ. WaveRNN [221]	Mel-Spectrogram	AR	1	RNN
	SC-WaveRNN [271]	Mel-Spectrogram	AR	1	RNN
	MB WaveRNN [426]	Mel-Spectrogram	AR	/	RNN
	FFTNet [146]	Cepstrum	AR	/	CNN
	iSTFTNet [153]	Mel-Spectrogram	NAR	/	CNN
	Par. WaveNet [261]	Linguistic Feature	NAR	Flow	CNN
	WaveGlow [285]	Mel-Spectrogram	NAR	Flow	Hybrid/CNN
Flow	FloWaveNet [166]	Mel-Spectrogram	NAR	Flow	Hybrid/CNN
	WaveFlow [277]	Mel-Spectrogram	AR	Flow	Hybrid/CNN
	SqueezeWave [441]	Mel-Spectrogram	NAR	Flow	CNN
	WaveGAN [69]	/	NAR	GAN	CNN
	GELP [150]	Mel-Spectrogram	NAR	GAN	CNN
	GAN-TTS [23]	Linguistic Feature	NAR	GAN	CNN
	MelGAN [182]	Mel-Spectrogram	NAR	GAN	CNN
	Par. WaveGAN [410]	Mel-Spectrogram	NAR	GAN	CNN
GAN	HiFi-GAN [178]	Mel-Spectrogram	NAR	GAN	Hybrid/CNN
	VocGAN [416]	Mel-Spectrogram	NAR	GAN	CNN
	GED [97]	Linguistic Feature	NAR	GAN	CNN
	Fre-GAN [164]	Mel-Spectrogram	NAR	GAN	CNN
VAE	Wave-VAE [274]	Mel-Spectrogram	NAR	VAE	CNN
	WaveGrad [41]	Mel-Spectrogram	NAR	Diffusion	Hybrid/CNN
	DiffWave [180]	Mel-Spectrogram	NAR	Diffusion	Hybrid/CNN
Diffusion	PriorGrad [189]	Mel-Spectrogram	NAR	Diffusion	Hybrid/CNN
	SpecGrad [176]	Mel-Spectrogram	NAR	Diffusion	Hybrid/CNN

Vocoder——AR

• WaveNet: autoregressive model with dilated causal convolution [254]

- Other works
 - WaveRNN [150]
 - LPCNet [363]

Generative models for acoustic model/vocoder

- Text to speech mapping p(x|y) is multimodal, since one text can correspond to multiple speech variations
 - Acoustic model, phoneme-spectrogram mapping: duration/pitch/energy/formant
 - Vocoder, spectrogram-waveform mapping: phase
- How to model a multimodal conditional distribution p(x|y)?
 - Autoregressive, GAN, VAE, Flow, Diffusion Model, etc
 - Since L1/L2 can be applied to mel-spectrogram, while cannot be directly applied to waveform
 - Advanced generative models are developed faster in vocoder than in acoustic model, but finally acoustic models catch up ⁽²⁾

9/18/2022

Generative models——Flow

- Map between data distribution p(x) and standard (normalizing) prior distribution p(z) Evaluation $z = f^{-1}(x)$ Synthesis x = f(z)
- Category of normalizing flow
 - AR (autoregressive): AF (autoregressive flow) and IAF (inverse autoregressive flow)
 - Bipartite: RealNVP and Glow

Flow		Evaluation $z = f^{-1}(x)$	Synthesis $x = f(z)$
۸D	AF [261]	$ z_t = x_t \cdot \sigma_t(x_{< t}; \theta) + \mu_t(x_{< t}; \theta)$	$x_t = \frac{z_t - u_t(x_{\le t};\theta)}{\sigma_t(x_{\le t};\theta)}$
АК	IAF [169]	$z_t = \frac{x_t - \mu_t(z_{\leq t};\theta)}{\sigma_t(z_{\leq t};\theta)}$	$ x_t = z_t \cdot \sigma_t(z_{< t}; \theta) + \mu_t(z_{< t}; \theta) $
D :	RealNVP [66]	$ z_a = x_a,$	$x_a = z_a,$
Bipartite	Glow [167]	$z_b = x_b \cdot \sigma_b(x_a; \theta) + \mu_b(x_a; \theta)$	$x_b = \frac{z_b - \mu_b(x_a;\theta)}{\sigma_b(x_a;\theta)}$

Generative models——Flow

- Parallel WaveNet [255] (AR)
 - Knowledge distillation: Student (IAF). Teacher (AF)
 - Combine the best of both worlds WaveNet Teacher
 - Parallel inference of IAF student
 - Parallel training of AF teacher

- Other works
 - ClariNet [269]

Generative models——Flow

- WaveGlow [279] (Bipartite)
 - Flow based transformation

- Other works
 - FloWaveNet [163]
 - WaveFlow [271]

convolution

squeeze to

vectors

X

WN

Generative models——GAN

• Adversarial loss

$$\mathcal{L}_{Adv}(D;G) = \mathbb{E}_{(x,s)} \left[(D(x) - 1)^2 + (D(G(s)))^2 \right]$$

$$\mathcal{L}_{Adv}(G;D) = \mathbb{E}_s \left[(D(G(s)) - 1)^2 \right]$$

• Category of GAN based vocoders

GAN	Generator	Discriminator	Loss
WaveGAN [68]	DCGAN [287]	/	WGAN-GP [97]
GAN-TTS [23]	/	Random Window D	Hinge-Loss GAN [198]
MelGAN [178]	/	Multi-Scale D	LS-GAN [231] Feature Matching Loss [182]
Par.WaveGAN [402]	WaveNet [254]	/	LS-GAN, Multi-STFT Loss
HiFi-GAN [174]	Multi-Receptive Field Fusion	Multi-Period D, Multi-Scale D	LS-GAN, STFT Loss, Feature Matching Loss
VocGAN [408]	Multi-Scale G	Hierarchical D	LS-GAN, Multi-STFT Loss, Feature Matching Loss
GED [96]	/	Random Window D	Hinge-Loss GAN, Repulsive loss

Generative models——GAN

- MelGAN [68]
 - Generator: Transposed conv for upsampling, dilated conv to increase receptive field
 - Discriminator: Multi-scale discrimination

(a) Generator

(b) Discriminator
Generative models——GAN

- HiFiGAN [68]
 - Multi-Scale Discriminator (MSD)
 - Multi-Period Discriminator (MPD)

Generative models——Diffusion

- Diffusion probabilistic model
 - Forward (diffusion) process: $q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_T q(\mathbf{x}_t|\mathbf{x}_{t-1}), \ q(\mathbf{x}_t|\mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$
 - Reverse (denoising) process $p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^{r} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t), \ p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$

T

Generative models——Diffusion

- Loss derived from ELBO: $L_{\text{simple}}(\theta) := \mathbb{E}_{t,\mathbf{x}_0,\epsilon} \left[\left\| \epsilon \epsilon_{\theta} \left(\mathbf{x}_t, t \right) \right\|^2 \right]$
- Training and inference process

Algorithm 1 Training	Algorithm 2 Sampling
for $i = 1, 2, \cdots, N_{\text{iter}}$ do	Sample $x_T \sim p_{\text{latent}} = \mathcal{N}(0, I)$
Sample $x_0 \sim q_{\text{data}}, \epsilon \sim \mathcal{N}(0, I)$, and	for $t=T,T-1,\cdots,1$ do
$t \sim \text{Uniform}(\{1, \cdots, T\})$	Compute $\mu_{\theta}(x_t, t)$ and $\sigma_{\theta}(x_t, t)$ using Eq. (5)
Take gradient step on	Sample $x_{t-1} \sim p_{\theta}(x_{t-1} x_t) =$
$\nabla_{\theta} \ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \ _2^2$	$\mathcal{N}(x_{t-1};\mu_{ heta}(x_t,t),\sigma_{ heta}(x_t,t)^2I)$
according to Eq. (7)	end for
end for	return x ₀

Generative models——Diffusion

- Diffusion model for vocoder: DiffWave [176], WaveGrad [41]
- Diffusion model for acoustic model: Diff-TTS, Grad-TTS
- Improving diffusion model for TTS
 - PriorGrad, SpecGrad, DiffGAN-TTS, WaveGrad 2, etc
- With sufficient diffusion steps, the quality is good enough, but latency is high
- How to reduce inference cost while maintaining the quality is challenging, and has a long way to go

Generative models——Comparison

• A comparison among different generative models

Generative Model	AR	VAE	Flow/AR 1	Flow/Bipartite	Diffusion	GAN
Parallel	Ν	Y	Y	Y	Y	Y
Latent Manipulate	Ν	Y	Y	Y	Y	Y*
Latent Inference	Ν	Y	Y	Y	Y	Ν
Distribution Loss	Ν	Ν	Y	Y	Y	Y
Likelihood Estimate	Y	Y	Y	Y	Y	Ν

Key components in TTS

- Direct text/phoneme to waveform generation
- Advantages:
 - Fully differentiable optimization (towards the end goal)
 - Reduce cascaded errors (training/inference mismatch)
 - No mel-spectrogram bias (mel-spectrogram is not an optimal representation)

• ClariNet: AR acoustic model and NAR vocoder [269]

• FastSpeech 2s: fully parallel text to wave model [292]

- EATS: fully parallel text to wave model [69]
 - Duration prediction
 - Monotonic interpolation for upsampling
 - Soft dynamic time warping loss
 - Adversarial training

- VITS [160]
 - VAE, Flow, GAN
 - VAE: mel→waveform
 - Flow for VAE prior
 - GAN for waveform generation
 - Monotonic alignment search

- NaturalSpeech: achieving human-level quality on LJSpeech dataset (CMOS)
- Questions
 - 1) how to define human-level quality in TTS?
 - 2) how to judge whether a TTS system has achieved human-level quality or not?
 - 3) how to build a TTS system to achieve human-level quality?
- Define human-level quality
 - If there is no statistically significant difference between the quality scores of the speech generated by a TTS system and the quality scores of the corresponding human recordings on a test set, then this TTS system achieves human-level quality on this test set.

- NaturalSpeech: achieving human-level quality on LJSpeech dataset (CMOS)
- Questions
 - 1) how to define human-level quality in TTS?
 - 2) how to judge whether a TTS system has achieved human-level quality or not?
 - 3) how to build a TTS system to achieve human-level quality?
- Judge human-level quality
 - At least 50 utterances, and each judged by 20 judges (native speakers)
 - CMOS \rightarrow 0, and Wilcoxon signed rank test p > 0.05

- NaturalSpeech: achieving human-level quality on LJSpeech dataset (CMOS)
- Questions
 - 1) how to define human-level quality in TTS?
 - 2) how to judge whether a TTS system has achieved human-level quality or not?
 - 3) how to build a TTS system to achieve human-level quality?
- Judge human-level quality

System	MOS	Wilcoxon p-value	CMOS	Wilcoxon p-value
Human Recordings	$ 4.52 \pm 0.11$	-	0	-
FastSpeech 2 [18] + HiFiGAN [17] Glow-TTS [13] + HiFiGAN [17] Grad-TTS [14] + HiFiGAN [17] VITS [15]	$ \begin{vmatrix} 4.32 \pm 0.10 \\ 4.33 \pm 0.10 \\ 4.37 \pm 0.10 \\ 4.49 \pm 0.10 \end{vmatrix} $	1.0e-05 1.3e-06 0.0127 0.2429	$ \begin{array}{ } -0.30 \\ -0.23 \\ -0.23 \\ -0.19 \end{array} $	5.1e-20 8.7e-17 1.2e-11 2.9e-04

- NaturalSpeech: achieving human-level quality on LJSpeech dataset (CMOS)
- Leverage VAE to compress high-dimensional waveform x into frame-level representations z~q(z|x), and is used to reconstruct waveform x~p(x|z)
- To enable text to waveform synthesis, z is predicted from y, z~p(z|y)
- However, the posterior z~q(z|x) is more complicated than the prior z~p(z|y).

- Solutions
 - Phoneme encoder with large-scale phoneme pre-training

Waveform x

- Differentiable durator
- Bidirectional prior/posterior
- Memory based VAE

Μ

Phoneme [ph₁] [ph₂] [ph₃] [ph₄] [M] [M] [ph₇] [ph₈]

sp₁

sp₂

(c) Phoneme pre-training.

q(z|x)

Key: Memory Bank MQuery: $z \sim q(z|x)$

(d) Memory mechanism in VAE.

Only in training

p(z'|y)

- Evaluations
 - MOS and CMOS on par with recordings, p-value >>0.05

Human Recordings	NaturalSpeech	Wilcoxon p-value	
4.58 ± 0.13	4.56 ± 0.13	0.7145	
Human Recordings	NaturalSpeech	Wilcoxon p-value	
0	-0.01	0.6902	
			CHANG

Achieving human-level quality on LJSpeech dataset for the first time!

Key components in TTS

9/18/2022

Part 1: Text-to-Speech Synthesis

Part 1.3: Advanced Topics in TTS

Advanced topics in TTS

- Expressive/Controllable TTS
- Robust TTS
- Model-Efficient TTS
- Data-Efficient TTS

Expressive TTS

- Expressiveness
 - Characterized by content (what to say), speaker/timbre (who to say), prosody/emotion/style (how to say), noisy environment (where to say), etc
- Over-smoothing prediction
 - One to many mapping in text to speech: p(y|x) multimodal distribution

57

Expressive TTS

Modeling variation information

Perspective	Category	Description	Work
	Explicit	Language/Style/Speaker ID	[445, 247, 195, 162, 39]
		Pitch/Duration/Energy	[290, 292, 181, 158, 239, 365]
Information	Implicit	Reference encoder	[309, 383, 224, 142, 9, 49, 37, 40]
Туре		VAE	[119, 4, 443, 120, 324, 325, 74]
		GAN/Flow/Diffusion	[224, 186, 366, 234, 159, 141]
		Text pre-training	[81, 104, 393, 143]
Information Granularity	Language/Speaker Level	Multi-lingual/speaker TTS	[445, 247, 39]
	Paragraph Level	Long-form reading	[11, 395, 376]
	Utterance Level	Timbre/Prosody/Noise	[309, 383, 142, 321, 207, 40]
	Word/Syllable Level		[325, 116, 45, 335]
	Character/Phoneme Level	Fine-grained information	[188, 324, 430, 325, 45, 40, 189]
	Frame Level	-	[188, 158, 49, 434]

Expressive TTS—Reference encoder

• Prosody embedding from reference audio [309]

Expressive TTS—Reference encoder

- Style tokens [383]
 - Training: attend to style tokens
 - Inference: attend to style tokens or simply pick style tokens

Controllable TTS—Disentangling, Controlling and Transferring

- Disentangling for control
 - Content/speaker/style/noise, e.g., adversarial training, semi-supervised learning
- Improving Controllability
 - Cycle consistency/feedback loss
- Transferring with control
 - Changing variance information for transfer

Technique	Description	Work
Disentangling for Control	Adversarial Training Semi-Supervised Learning	[5, 19, 20, 21] [4, 5, 14, 19, 163]
Improving Controllability Transfering with Control	Cycle Consistency/Feedback Loss Changing Variance Information in Inference	[31, 32, 33, 34, 35] [1, 2, 3, 10, 120]

Controllable TTS—Disentangling, Controlling and Transferring

- Disentangling correlated speaker and noise [120]
 - Synthesize clean speech for noisy speakers

Controllable TTS—Disentangling, Controlling and Transferring

- Disentangling correlated speaker and noise with frame-level modeling [434]
 - Synthesize clean speech for noisy speakers

Robust TTS

- Robustness issues
 - Word skipping, repeating, attention collapse

You can call me directly at 4257037344 or my cell 4254447474 or send me a meeting request with all the appropriate information.

- The cause of robustness issues
 - The difficulty of alignment learning between text and mel-spectrograms
 - Exposure bias and error propagation in AR generation
- The solutions
 - Enhance attention
 - Replace attention with duration prediction
 - Enhance AR
 - Replace AR with NAR

Robust TTS

Category	Technique	Work
Enhancing Attention	 Content-based attention Location-based attention Content/Location hybrid attention Monotonic attention Windowing or off-diagonal penalty Enhancing enc-dec connection Positional attention 	[382, 192] [315, 333, 367, 17] [303] [438, 107, 411] [332, 438, 270, 39] [382, 303, 270, 203, 39] [268, 234, 204]
Replacing Attention with Duration Prediction	 Label from encoder-decoder attention Label from CTC alignment Label from HMM alignment Dynamic programming Monotonic alignment search Monotonic interpolation with soft DTW 	[290, 361, 197, 181] [19] [292, 418, 194, 252, 74, 304] [429, 193, 235] [159] [69, 75]
Enhancing AR	Professor forcing Reducing training/inference gap Knowledge distillation Bidirectional regularization	[99, 205] [361] [209] [291, 452]
Replacing AR with NAR	Parallel generation	[290, 292, 268, 69]

- Encoder-decoder attention: alignment between text and mel
 - Local, monotonic, and complete

- Location sensitive attention [50, 303]
 - Use previous alignment to compute the next attention alignment

 $\alpha_{i} = Attend(s_{i-1}, \alpha_{i-1}, h)$ $g_{i} = \sum_{j=1}^{L} \alpha_{i,j} h_{j}$ $y_{i} \sim Generate(s_{i-1}, g_{i}),$

- Monotonic attention [288, 47]
 - The attention position is monotonically increasing

(a) Soft attention.

(b) Hard monotonic attention. (c) Monotonic chunkwise attention. $e_{i,j} = \text{MonotonicEnergy}(s_{i-1}, h_j)$ $p_{i,j} = \sigma(e_{i,j})$ $z_{i,j} \sim \text{Bernoulli}(p_{i,j})$

Speech Synthesis Tutorial @ INTERSPEECH 2022

utput

- Windowing [332, 438]
 - Only a subset of the encoding results $\hat{x} = [x_{p-w}, ..., x_{p+w}]$ are considered at each decoder timestep when using the windowing technique
- Penalty loss for off-diagonal attention distribution [39]
 - Guided attention loss with diagonal band mask

• Multi-frame prediction [382]

9/18/2022

- Predicting multiple, non-overlapping output frames at each decoder step
- Increase convergence speed, with a much faster (and more stable) alignment learned from attention
- Decoder prenet dropout/bottleneck [382,39]
 - 0.5 dropout, small hidden size as bottleneck

70

Relu

Dense (32x256)

Relu + Dropout 0.5

Dense (32x32)

Relu + Dropout 0.5

Dense (80x32)

Robust TTS——Durator

- Duration prediction and expansion
 - SPSS \rightarrow Seq2Seq model with attention \rightarrow Non-autoregressive model
 - Duration \rightarrow attention, no duration \rightarrow duration prediction (technique renaissance)

Robust TTS——Durator

Parallel Tacotron 2

NaturalSpeech
Robust TTS

• A new taxonomy of TTS

Attention?	AR? AR	Non-AR
Attention	Tacotron 2 [303], DeepVoice 3 [270]	ParaNet [268], Flow-TTS [234]
Non-Attention	DurIAN [418], Non-Att Tacotron [304]	FastSpeech [290, 292], EATS [69]

Model-Efficient TTS

- Fast synthesis speed, small memory storage, and low computation cost
- Parallel generation
 - Increase the parallelism of computation and improve inference/training speed

Modeling Paradigm	TTS Model	Training	Inference
AR (RNN) AR (CNN/Self-Att) NAR (CNN/Self-Att) NAR (GAN/VAE) Flow (AR) Flow (Bipartite)	Tacotron 1/2, SampleRNN, LPCNet DeepVoice 3, TransformerTTS, WaveNet FastSpeech 1/2, ParaNet MelGAN, HiFi-GAN, FastSpeech 2s, EATS Par. WaveNet, ClariNet, Flowtron WaveGlow, FloWaveNet, Glow-TTS	$ \begin{array}{c} \mathcal{O}(N) \\ \mathcal{O}(1) \\ \mathcal{O}(1) \\ \mathcal{O}(1) \\ \mathcal{O}(1) \\ \mathcal{O}(1) \\ \mathcal{O}(T) \end{array} $	$ \begin{array}{c} \mathcal{O}(N) \\ \mathcal{O}(N) \\ \mathcal{O}(1) \\ \mathcal{O}(1) \\ \mathcal{O}(1) \\ \mathcal{O}(T) \end{array} $
Diffusion	DiffWave, WaveGrad, Grad-TTS, PriorGrad	$\mathcal{O}(T)$	$\mathcal{O}(T)$

- Lightweight modeling
 - Small model size, low computation, and fast inference speed
 - Pruning, quantization, knowledge distillation, and neural architecture search
- Efficient modeling with domain knowledge
 - linear prediction, multiband modeling, subscale prediction, multi-frame prediction, streaming synthesis

Model-Efficient TTS — Parallel Generation

- The model usually adopts autoregressive mel and waveform generation
 - Sequence is very long, e.g., 1s speech, 100 mel, 24000 waveform points
 - Slow inference speed

Model-Efficient TTS — Parallel Generation

• The key is to bridge the length mismatch between text and speech

Model-Efficient TTS — Parallel Generation

• The key is to bridge the length mismatch between text and speech

$$oldsymbol{S}_{i,j}=i-\sum_{k=1}^{j-1}d_k, \hspace{0.2cm} oldsymbol{E}_{i,j}=\sum_{k=1}^{j}d_k-i, \hspace{0.2cm} oldsymbol{S}_{m imes n} \hspace{0.2cm} oldsymbol{E}_{m imes n}$$

$$\begin{split} \boldsymbol{W} &= \operatorname{Softmax}(\operatorname{MLP}_{10 \to q}([\boldsymbol{S}, \boldsymbol{E}, \operatorname{Expand}(\operatorname{Conv1D}(\operatorname{Proj}(\boldsymbol{H})))])), \\ \boldsymbol{C} &= \operatorname{MLP}_{10 \to p}([\boldsymbol{S}, \boldsymbol{E}, \operatorname{Expand}(\operatorname{Conv1D}(\operatorname{Proj}(\boldsymbol{H})))]), \end{split}$$

$$\boldsymbol{O} = \underset{qh \rightarrow h}{\operatorname{Proj}}(\boldsymbol{W}\boldsymbol{H}) + \underset{qp \rightarrow h}{\operatorname{Proj}}(\operatorname{Einsum}(\boldsymbol{W},\boldsymbol{C}))$$

Parallel Tacotron 2

nunctuations

Data-Efficient TTS

- Language level: TTS for every language
 - There are 7,000+ languages in the world, but popular commercialized speech services only support dozens or hundreds of languages

Microso Azure

Google Cloud

- However, lack of data in low-resource languages and the data collection cost is high.
- Speaker level: TTS for everyone
 - 1) Pre-training on multi-speaker TTS model; 2) Fine-tuning on speech data from target speaker; 3) Inference speech for target speaker

Language-Level Data-Efficient TTS

Self-Supervised TrainingUnpaired text or speech[1, 2, 3, 4, 5, 6, 7, 8, 9]Cross-Lingual TransferPaired text and speech[10, 11, 12, 13, 14, 15, 16]Semi-Supervised TrainingUnpaired text or speech[11, 17, 18, 19]Dataset Mining in the WildPaired text and speech[20, 21, 22]Purely Unsupervised LearningUnpaired text and speech[23, 24, 25]	Techniques	Data	Work
I utery Unsupervised Learning Unparted text and speech [23, 24, 23]	Self-Supervised Training	Unpaired text or speech	[1, 2, 3, 4, 5, 6, 7, 8, 9]
	Cross-Lingual Transfer	Paired text and speech	[10, 11, 12, 13, 14, 15, 16]
	Semi-Supervised Training	Unpaired text or speech	[11, 17, 18, 19]
	Dataset Mining in the Wild	Paired text and speech	[20, 21, 22]
	Purely Unsupervised Learning	Unpaired text and speech	[23, 24, 25]

- Self-supervised training
 - Text pre-training, speech pre-training, discrete token quantization
- Cross-lingual transfer
 - Languages share similarity, phoneme mapping/re-initialization/IPA/byte
- Semi-supervised training
 - Speech chain/back transformation (TTS $\leftarrow \rightarrow$ ASR)
- Dataset mining in the wild
 - Speech enhancement, denoising, disentangling
- Purely unsupervised learning

Language-Level Data-Efficient TTS—LRSpeech [396]

- Step 1: Language transfer
 - Human languages share similar pronunciations; Rich-resource language data is "free"
- Step 2: TTS and ASR help with each other
 - Leverage the task duality with unpaired speech and text data
- Step 3: Customization for product deployment with knowledge distillation
 - Better accuracy by data knowledge distillation
 - Customize multi-speaker TTS to a target-speaker TTS, and to small model

Speaker-Level Data-Efficient TTS

- Voice adaptation, voice cloning, custom voice
- Challenges
 - To support diverse customers, the source model needs to be generalizable enough, the target speech may be diverse (different acoustics/styles/languages)
 - To support many customers, the adaptation needs to be data and parameter efficient

Speaker-Level Data-Efficient TTS

• A taxonomy on adaptive TTS

Category	Topic	Work
Improving Generalization	Modeling Variation Information Increasing Data Coverage	[43] [13, 55]
Cross-Domain Adaption	Cross-Acoustic Adaptation Cross-Style Adaptation Cross-Lingual Adaptation	[43, 56] [57, 58, 59] [60, 61, 62]
Few-Data Adaption	Transcribed Data Adaptation Untranscribed Data Adaptation	[41, 42, 43, 63, 64, 65, 66, 67] [68, 69, 70]
Few-Parameter Adaptation	[41, 42, 43]	
Zero-Shot Adaptation	-	[41, 42, 71, 72]

Speaker-Level Data-Efficient TTS—AdaSpeech [40]

- AdaSpeech
 - Acoustic condition modeling
 - Model diverse acoustic conditions at speaker/utterance /phoneme level
 - Support diverse conditions in target speaker
 - Conditional layer normalization
 - To fine-tune as small parameters as possible while ensuring the adaptation quality

Speaker-Level Data-Efficient TTS—AdaSpeech 2 [403]

- Only untranscribed data, how to adapt?
 - In online meeting, only speech can be collected, without corresponding transcripts
- AdaSpeech 2, speech reconstruction with latent alignment
 - Step 1: source TTS model training
 - Step 2: speech reconstruction
 - Step 3: speaker adapatation
 - Step 4: inference

Speaker-Level Data-Efficient TTS—AdaSpeech 3 [404]

• Spontaneous style

- Current TTS voices mostly focus on reading style.
- Spontaneous-style voice is useful for scenarios like podcast, conversation, etc.
- AdaSpeech 3
 - Construct spontaneous dataset
 - Modeling filled pauses (FP, um and uh) and diverse rhythms

Advanced topics in TTS

- Expressive/Controllable TTS
- Robust TTS
- Model-Efficient TTS
- Data-Efficient TTS

Part 1: Text-to-Speech Synthesis

Part 1.4: Summary and Future Directions

Summary

Outlook: Higher-quality synthesis

- Powerful generative models
- Better representation learning
- Expressive/controllable/transferrable speech synthesis
- More human-like speech synthesis
 - NaturalSpeech has achieved human-level quality in LJSpeech audiobook at sentence level, but expressive voices, longform audiobook voices are still challenging!
 - Expressive/emotional voice
 - Variation information modeling and control
 - Generative models for expressive synthesis
 - Long-form reading (article, paragraph, novel)
 - Expressive and consistent prosody
 - Spontaneous speech

"The future of speech processing"

General Excited Terrified Whispered Shouting

"A Dream of Red Mansions"

Outlook: More efficient synthesis

- Data-efficient TTS
 - Language expansion (TTS for every language)
 - Speaker expansion (TTS for everyone)
- Model-efficient TTS
 - Computation/memory/time-efficient: Cloud-Edge-End (TTS for everywhere)

Outlook: Beyond speech synthesis

- Binaural audio synthesis (spatial sound/metaverse)
- Audio event/effect synthesis

• Singing/music synthesis

• Visualization of speech: talking face synthesis

Reference

See the references in:

A Survey on Neural Speech Synthesis

https://arxiv.org/pdf/2106.15561.pdf

A Survey on Neural Speech Synthesis

Xu Tan, Tao Qin, Frank Soong, Tie-Yan Liu {xuta,taoqin,frankkps,tyliu}@microsoft.com Microsoft Research Asia

https://speechresearch.github.io/

Speech Research

This page lists some speech related research at Microsoft Research Asia, conducted by the team led by <u>Xu Tan</u>. The research topics cover text to speech, singing voice synthesis, music generation, automatic speech recognition, etc. Some research are open-sourced via <u>NeuralSpeech</u> and <u>Muzic</u>.

We are hiring researchers on speech, NLP, and deep learning at Microsoft Research Asia. Please contact xuta@microsoft.com if you have interests.

Machine Translation with Speech-Aware Length Control for Video Dubbing

August 30, 2022

BinauralGrad: A Two-Stage Conditional Diffusion Probabilistic Model for Binaural Audio Synthesis May 29, 2022

NaturalSpeech: End-to-End Text to Speech Synthesis with Human-Level Quality May 03, 2022

Mixed-Phoneme BERT: Improving BERT with Mixed Phoneme and Sup-Phoneme Representations for Text to Speech

April 02, 2022

AdaSpeech 4: Adaptive Text to Speech in Zero-Shot Scenarios March 06, 2022

Speech-T: Transducer for Text to Speech and Beyond

October 06, 2021

TeleMelody: Lyric-to-Melody Generation with a Template-Based Two-Stage Method

A book on TTS

A book on "Neural Text-to-Speech Synthesis", by Xu Tan

will be published soon!

Watch this repo for update: https://github.com/tts-tutorial/book

We are hiring

- Research FTE (social/campus hire)
 - Speech (TTS/ASR)
 - NLP (Machine Translation, Text Summarization, Pre-training, etc)
 - Generative Models (AR, GAN, Flow, VAE, Diffusion Model)
 - Machine Learning, Deep Learning
- Research Intern
 - Speech, Music, Machine Translation, Machine Learning

Machine Learning Group, Microsoft Research Asia Xu Tan <u>xuta@microsoft.com</u>

Thank You!

Xu Tan/谭旭 Principal Researcher and Research Manager @ Microsoft Research Asia <u>xuta@microsoft.com</u>

<u>tan-xu.github.io</u> <u>https://www.microsoft.com/en-us/research/people/xuta/</u> https://speechresearch.github.io/

Neural Speech Synthesis

Xu Tan Microsoft Research Asia

Hung-yi Lee National Taiwan University

Slides can be found in https://github.com/tts-tutorial/interspeech2022

INTERSPEECH 2022 2022-09-18